Question		Answer	Marks	Guidance	
1	(i)	Positive	[1]	CAO	
1	(ii)	$\begin{array}{\|ll\|} \hline \text { Mean =5.064 } & \text { allow } 5.1 \text { with working } 126.6 / 25 \text { or } 5.06 \text { without } \\ \text { SD = 1.324 } & \text { allow } 1.3 \text { with working or } 1.32 \text { without } \end{array}$	B1 B2 [3]	Allow B1 for RMSD = 1.297 or var $=1.753$ or MSD $=1.683$	Also allow B1 for $\mathrm{Sxx}=42.08$ or for $\Sigma x^{2}=683$ SC1 for both mean $=50.64$ and $\mathrm{SD}=$ 13.24 (even if over-specified)
1	(iii)	$\bar{X}-2 s=5.064-2 \times 1.324=2.416$ $\bar{x}+2 s=5.064+2 \times 1.324=7.712$ So there is an outlier.	B1FT M1 A1FT E1 [4]	FT their mean and sd for $\bar{X}+2 s$ but withhold final E mark if their limits mean that there are no outliers. For upper limit Incorrect statement such as 7.6 and 8.1 are outliers gets E0 Do not award E1 if calculation error in upper limit	For use of quartiles and IQR $\mathrm{Q}_{1}=3.95 ; \mathrm{Q}_{3}=6.0 ; \mathrm{IQR}=2.05$ 3.95 - 1.5(2.05) gets M1 Allow other sensible definitions of quartiles $6.0+1.5(2.05)$ gets M1 Limits 0.875 and 9.075 So there are no outliers NB do not penalise over-specification here as not the final answer but just used for comparison. FT from SC1

$\mathbf{3}$ (i)	Mode $=960$ (grams) Median $=1020$ (grams) N.B. 96 and 102 gets SC1	B1 CAO B1 CAO	Ignore units and working	
(ii)	Positive	E1	$\mathbf{1}$	Not right skewed Not positive correlation
			TOTAL	$\mathbf{3}$

4	(i)	5 2 6 3 4 7 8 7 1 2 2 3 5 5 9 8 1 Key 6 3 represents 63 mph	G1 stem G1 leaves CAO G1 sorted G1 key	[4]
	(ii)	$\begin{aligned} & \text { Median = } 72 \\ & \text { Midrange }=66.5 \end{aligned}$	$\begin{aligned} & \text { B1 FT } \\ & \text { B1 CAO } \end{aligned}$	[2]
	(iii)	EITHER: Median since midrange is affected by outlier (52) OR: Median since the lack of symmetry renders the midrange less representative	E1 for median E1 for explanation TOTAL	[2] [8]

$\begin{aligned} & \hline 5 \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \text { Median = } 2 \\ & \text { Mode }=1 \end{aligned}$	B1 CAO B1 CAO	2
(ii)		S1 labelled linear scales on both axes H1 heights	2
(iii)	Positive	B1	1
		TOTAL	5

 in the range $£ 0.74-£ 0.76$ or 74 p -76 p (both inclusive) scores SC1 (units essential to gain this mark)

Standard Deviation: (CARE NEEDED here with close proximity of answers)

- $50.2(0)$ using divisor 9999 scores B2 (50.20148921)
- 50.198 (= 50.2) using divisor 10000 scores B1(rmsd)
- If divisor is not shown (or calc used) and only an answer of 50.2 (i.e. not coming from 50.198) is seen then award B2 on b.o.d. (default)

After B0 scored then an attempt at $S_{x x}$ as evident by either $S_{x x}=(5000+200000+25000000)-\frac{7500^{2}}{10000} \quad(=25199375)$ or
$S_{x x}=(5000+200000+25000000)-10000(0.75)^{2}$
scores (M1) or M1ft 'their $7500^{\mathbf{2}}$, or 'their $0.75^{\mathbf{2}}$,
NB The structure must be correct in both above cases with a max of 1 slip only after applying the f.t.

B1 for numerical mean
(0.75 or 75 seen)
B1dep for correct units attached

B2 correct s.d.
(B1) correct rmsd
(B2) default
$\sum f x^{2}=25,205,000$
Beware $\sum x^{2}=25,010,100$
After B0 scored then
(M1) or M1f.t. for attempt at $S_{x x}$

NB full marks for correct results from recommended method which is use of calculator functions

(ii)	$\begin{aligned} & \text { P(Two } £ 10 \text { or two } £ 100) \\ & \quad \begin{aligned} = & \frac{50}{10000} \times \frac{49}{9999}+\frac{20}{10000} \times \frac{19}{9999} \\ & =0.0000245+0.0000038 \\ & =0.000028(3) \text { o.e. } \end{aligned} \quad=(0.00002450245+0.00000380038) \\ & \end{aligned}$ After M0, M0 then $\frac{50}{\mathbf{1 0 0 0 0}} \times \frac{50}{\mathbf{1 0 0 0 0}}+\frac{20}{\mathbf{1 0 0 0 0}} \times \frac{\mathbf{2 0}}{\mathbf{1 0 0 0 0}}$ o.e. Scores SC1 (ignore final answer but SC1 may be implied by sight of 2.9×10^{-5} o.e.) Similarly, $\frac{50}{10000} \times \frac{49}{10000}+\frac{20}{10000} \times \frac{19}{10000}$ scores SC1	M1 for either correct product seen (ignore any multipliers) M1 sum of both correct (ignore any multipliers) A1 CAO (as opposite with no rounding) (SC1 case \#1) (SC1 case \#2) CARE answer is also 2.83×10^{-5}	3
		TOTAL	7

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
\[
7
\] \\
(i)
\end{tabular} \& Positive \& B1 \& 1 \\
\hline (ii) \& \[
\begin{aligned}
\& \text { Number of people }=20 \times 33(000)+5 \times 58(000) \\
\& =660(000)+290(000)=950000
\end{aligned}
\] \& \begin{tabular}{l}
M1 first term \\
M1(indep) second term \\
A1 cao \\
NB answer of 950 scores M2AO
\end{tabular} \& 3 \\
\hline (iii) \& \begin{tabular}{l}
(A) \(a=1810+340=2150\) \\
(B) Median = age of \(1385\left(000^{\text {th }}\right)\) person or \(1385.5(000)\) \\
Age 30, cf = 1240 (000); age 40, cf = 1810 (000) \\
Estimate median \(=(30)+\frac{145}{570} \times 10\) \\
Median \(=32.5\) years (32.54...) If no working shown then 32.54 or better is needed to gain the M1A1. If 32.5 seen with no previous working allow SC1
\end{tabular} \& \begin{tabular}{l}
M1 for sum \\
A1 cao 2150 or 2150 thousand but not 215000 \\
B1 for 1385 (000) or 1385.5 \\
M1 for attempt to interpolate \(\frac{145 k}{570 k} \times 10\) \\
(2.54 or better suggests this) \\
A1 cao min 1dp
\end{tabular} \& 2

3

\hline (iv) \& | Frequency densities: 56, 65, 77, 59, 45, 17 |
| :--- |
| (accept 45.33 and 17.43 for 45 and 17) | \& | B1 for any one correct |
| :--- |
| B1 for all correct |
| (soi by listing or from histogram) |
| Note: all G marks below dep on attempt at frequency density, NOT frequency |
| G1 Linear scales on both axes (no inequalities) G1 Heights FT their listed fds or all must be correct. Also widths. All blocks joined |
| G1 Appropriate label for vertical scale eg 'Frequency density (thousands)', 'frequency (thousands) per 10 years', 'thousands of people per 10 years'. (allow key). OR f.d. | \& 5

\hline
\end{tabular}

(v)	Any two suitable comments such as: Outer London has a greater proportion (or \%) of people under 20 (or almost equal proportion)	E1	
The modal group in Inner London is 20-30 but in Outer London it is 30-40 Outer London has a greater proportion (14\%) of aged 65+ All populations in each age group are higher in Outer London Outer London has a more evenly spread distribution or balanced distribution (ages) o.e.	E1		
(vi)	Mean increase \uparrow median unchanged (-) midrange increase \uparrow standard deviation increase \uparrow interquartile range unchanged. (-)	Any one correct B1 Any two correct B2 Any three correct B3 All five correct B4	$\mathbf{2}$
		$\mathbf{4}$	

